Losartan is an angiotensin-receptor blocker (ARB) that may be used alone or with other agents to treat hypertension.
Losartan and its longer acting metabolite, E-3174, lower blood pressure by antagonizing the renin-angiotensin-aldosterone system (RAAS); they compete with angiotensin II for binding to the type-1 angiotensin II receptor (AT1) subtype and prevents the blood pressure increasing effects of angiotensin II.
Unlike angiotensin-converting enzyme (ACE) inhibitors, ARBs do not have the adverse effect of dry cough. Losartan may be used to treat hypertension, isolated systolic hypertension, left ventricular hypertrophy and diabetic nephropathy. It may also be used as an alternative agent for the treatment of systolic dysfunction, myocardial infarction, coronary artery disease, and heart failure.
May be used as a first line agent to treat uncomplicated hypertension, isolated systolic hypertension and left ventricular hypertrophy. May be used as a first line agent to delay progression of diabetic nephropathy. Losartan may be also used as a second line agent in the treatment of congestive heart failure, systolic dysfunction, myocardial infarction and coronary artery disease in those intolerant of ACE inhibitors.
Losartan is the first of a class of antihypertensive agents called angiotensin II receptor blockers (ARBs). Losartan and its longer acting active metabolite, E-3174, are specific and selective type-1 angiotensin II receptor (AT1) antagonists which block the blood pressure increasing effects angiotensin II via the renin-angiotensin-aldosterone system (RAAS). RAAS is a homeostatic mechanism for regulating hemodynamics, water and electrolyte balance. During sympathetic stimulation or when renal blood pressure or blood flow is reduced, renin is released from granular cells of the juxtaglomerular apparatus in the kidneys.
Renin cleaves circulating angiotensinogen to angiotensin I, which is cleaved by angiotensin converting enzyme (ACE) to angiotensin II. Angiotensin II increases blood pressure by increasing total peripheral resistance, increasing sodium and water reabsorption in the kidneys via aldosterone secretion, and altering cardiovascular structure.
Angiotensin II binds to two receptors: AT1 and type-2 angiotensin II receptor (AT2). AT1 is a G-protein coupled receptor (GPCR) that mediates the vasoconstrictive and aldosterone-secreting effects of angiotensin II. Studies performed in recent years suggest that AT2 antagonizes AT1-mediated effects and directly affects long-term blood pressure control by inducing vasorelaxation and increasing urinary sodium excretion. Angiotensin receptor blockers (ARBs) are non-peptide competitive inhibitors of AT1. ARBs block the ability of angiotensin II to stimulate pressor and cell proliferative effects. Unlike ACE inhibitors, ARBs do not affect bradykinin-induced vasodilation. The overall effect of ARBs is a decrease in blood pressure.
Losartan competitively inhibits the binding of angiotensin II to AT1 in many tissues including vascular smooth muscle and the adrenal glands. Losartan is metabolized to its active metabolite, E-3174, which is 10 to 40 times more potent than losartan and acts as a non-competitive AT1 antagonist.
Inhibition of angiotensin II binding to AT1 inhibits its AT1-mediated vasoconstrictive and aldosterone-secreting effects and results in decreased vascular resistance and blood pressure. Losartan is 1,000 times more selective for AT1 than AT2.
Inhibition of aldosterone secretion may increase sodium and water excretion while decreasing potassium excretion. Losartan is effective for reducing blood pressure and may be used to treat essential hypertension, left ventricular hypertrophy and diabetic nephropathy.
Metabolism: Hepatic. Losartan is metabolized to a 5-carboxylic acid derivative (E-3174) via an aldehyde intermediate (E-3179) primarily by cytochrome P450 (CYP) 2C9 and CYP3A4. E-3174 is an active metabolite with 10- to 40-fold higher potency than its parent compound, losartan. Approxiamtely 14% of losartan is converted to E-3174; however, the AUC of E-3174 was found to be 4- to 8-fold higher than losartan and E-3174 is considered the main contributor to the pharmacologic effects of this medication.
Absorption: Losartan is well absorbed and undergoes substantial first-pass metabolism; the systemic bioavailability of losartan is approximately 33%. Mean peak concentrations of losartan and its active metabolite are reached in 1 hour and in 3-4 hours, respectively. While maximum plasma concentrations of losartan and its active metabolite are approximately equal, the AUC of the metabolite is about 4 times as great as that of losartan. When given with a meal, absorption is slows down and Cmax decreases.
Route of elimination: Following oral administration of losartan, 35% of the dose is recovered in the urine and about 60% in the feces. Following an intravenous dose, 45% is recovered in the urine and 50% in the feces.
Half life: The terminal t1/2 of losartan is 2 hours. The active metabolite has a half-life of 6-9 hours.
All medicines may cause side effects, but many people have no, or minor, side effects.Some medical conditions may interact with Losartan.
Tell your doctor or pharmacist if you have any medical conditions.
Common losartan side effects may include: cold or flu symptoms such as stuffy nose, sneezing, sore throat, fever, dry cough, muscle cramps, pain in your legs or back, stomach pain, diarrhea, headache, dizziness, tired feeling or sleep problems (insomnia).
This is not a complete list of all side effects that may occur. If you have questions about side effects, contact your health care provider.